Modernizing Production Systems: PPIs Using Reproducible Analytical Pipelines

39th Meeting of Voorburg Group of Service Statistics

Xin Ha

Producer Prices Division

Statistics Canada

September 23, 2025

Delivering insight through data for a better Canada

Outline

- 1. Background
- 2. Initial Pipeline Model
- 3. Reproducible Analytical Pipelines (RAPs)
- 4. Implementation
- 5. Lessons Learned
- 6. Example

Background

- Our legacy corporate system was rigid, hard to maintain, and limited in transparency and scalability.
- In 2021, Producer Prices Division started to move away from corporate system to make price indexes towards a pipeline model.
 - Today, this is how we make nearly all our indexes.
- The pipeline model works well and results in better price statistics, but there are some challenges.
- The Reproducible Analytical Pipeline (RAP) framework gives us a way to make big improvements to our current workflow without much extra work.

Initial Pipeline Model

- A collection of R + Python scripts read prices, processes them (e.g., remove outliers), make elementary
 indexes, aggregate with some weights, write the index to disk.
- Scripts are version controlled on GitLab, usually with some automated tests.
- Documentation on how to execute a pipeline.

Initial Pipeline Model: Advantages

- Flexible.
- Transparent.
- Easier than corporate systems.

Initial Pipeline Model: Areas for Improvement

- Software environment drift can lead to inconsistencies in output over time or across users.
- Lack of structure allows programs and data to become complex.
- Manually executing a pipeline is less than ideal.

Initial Pipeline Model: Performance Metrics

What is a Reproducible Analytical Pipeline (RAP)?

- Reproducible Analytical Pipelines is a set of tools, principles, and techniques to help you improve your analytical processes.
- "Reproducible" means someone else can rerun your analysis and get the same results.
 - Crucial for official statistics.
- With RAP, you'll leverage open-source tools to make your work more efficient, more reusable, and less error-prone.
- A RAP is not just code, it's a workflow mindset (modular, testable, documented, automated).

Why a RAP?

- Comes out of NHS / UK public service.
 - RAP Community of Practice.
- Popular model in the open science world.
 - e.g., The Turing Way.
- Natural evolution of current workflow for making price indexes.
- Why RAPs matter for official statistics:
 - Ensures statistical reproducibility.
 - Quality: reduced errors.
 - Facilitates peer review, auditing, and transparency.
 - Efficiency: faster updates, reruns, scaling.
 - Helps with workforce turnover. Pipelines are more maintainable.
 - Positions the agency for future innovation (cloud, APIs).

RAP: Ingredients

- 1. Environment management.
 - Create a reproducible software environment so the same tools are used.
- 2. Version control (version => reference period).
 - Keep track of the version of code/scripts to make an index.
 - Keep track of the version of data to make an index.
- 3. Pipeline orchestration.
 - Automate executing scripts to build index.
- 4. Modular design (each step in the pipeline should be independent and testable).
- 5. Continuous integration/testing (e.g., GitLab CI/CD).

RAP: Software stack

- Lots of ways to implement a RAP.
- Start with R + Python for computational tools.
 - Add git + gitlab for version control, collaboration, testing.
- Use conda for environment management.
- Use DVC to version data with git and orchestrate work as a (targets) pipeline
 - DVC not only versions data but can also help orchestrate pipeline steps through dependency graphs.

Lessons Learned

- Barriers:
 - Learning curve for some tools (Git, Conda, DVC)
 - Resistance to change
- Enablers:
 - Community of practice and shared codebases
 - Training and documentation
 - Management support for modernization

Example

 Make a standard industry index aggregated according to an industry classification and based on data from a sample of 1,000 businesses over 10 years.

Index method

- Businesses are the elementary aggregates.
- Most price data come from a survey that collects prices (Jevons index).
 - Businesses in two subsectors (4-digit) are regulated and there's administrative data with prices and quantities (Törnqvist index).
 - The index for all businesses in one subsector (1255) is imputed from a different index series.
- Business indexes are aggregated with fixed revenue weights.

Software Environment

```
name: price-index-pipeline
channels:
    https://svc-das:cmVmdGtuOjAxOjAwMDAwMDA6dVJ1ZTFLTTUzQjFIWXFpTU5PWG1zOXNBb0lW@artifactory.cloud.statcan.ca/arti
    nodefaults
dependencies:
    r-base=4.4.3
    r-piar=0.8.2
    r-dplyr
    r-languageserver
    dvc
    radian
variables:
    DVC_NO_ANALYTICS: true
```


Pipeline Workflow

```
stages:
 process-prices:
   cmd: Rscript R/process-prices.R
   deps:
      - R/process-prices.R
      data/raw-survey-prices.csv
   outs:
      - data/survey-prices.csv
 make-index:
   cmd: Rscript R/make-index.R
   deps:
      - R/make-index.R
      - data/survey-prices.csv
      - data/admin-prices.csv
      - data/index-1255.csv
      - data/weights.csv
   outs:
      output/index.csv
      output/contributions.csv
```


Canadä

Making the index

```
conda activate price-index-pipeline
time dvc repro
Running stage 'process-prices':
> Rscript R/process-prices.R
Updating lock file 'dvc.lock'
Verifying data sources in stage: 'data/raw-survey-prices.csv.dvc'
Verifying data sources in stage: 'data/admin-prices.csv.dvc'
Verifying data sources in stage: 'data/index-1255.csv.dvc'
Verifying data sources in stage: 'data/weights.csv.dvc'
Running stage 'make-index':
> Rscript R/make-index.R
Updating lock file 'dvc.lock'
Use `dvc push` to send your updates to remote storage.
       15.186s
real
```


Questions

